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Intelligent and Distributed Localization of

Nodes in Wireless Sensor Networks

Amina Yusif Al-Sallut

Abstract

In wireless sensor networks, the issue of wireless nodes localization has taken a wide
area of research. Most applications need to know position of sensor nodes for reasons
of optimal and fast data routing. In this research, a new distributed localization
algorithm based on Self Organizing Maps (SOMs) is proposed to determine the
location of a wireless node in a wireless sensor network.

The proposed algorithm is classified as a range-free algorithm which uses only the
connectivity information between nodes without the need to measure the time of
arrival or signal strength as the range-based algorithms require. It utilizes the
neighborhood information and the well-known anchors' positions to calculate the
estimated locations of nodes. Our algorithm is made up of two main stages: the
initialization stage, in which the initial estimated locations of nodes are calculated to
be fed to the SOMs, and the learning stage, in which SOMs are used to calculate the
physical locations of sensor nodes.

By using the neighborhood information at the first stage, the algorithm has reduced
the SOM learning time and the number of iterations to the convergence significantly.
On the other hand, starting with real beneficial data rather than random data
maximized the accuracy of the resulted locations. Furthermore, the distributed
implementation of the algorithm highly alleviated the pressure on the wireless nodes,
which are characterized with low power and limited capabilities.

The proposed algorithm has been implemented using MATLAB software and
experimented by deploying different number of nodes in a specific area with different
communication radio ranges. Extensive simulations evidently verified the
performance of the algorithm and achieved a very good accuracy. Moreover, the
algorithm proved its effectiveness with the low average error and number of iterations
needed in comparison with other recent related algorithms.

Keywords

Wireless Sensor Networks, Localization, Self Organizing Maps, Anchor Nodes
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Chapter 1
Introduction

1.1 Sensor Networks

Sensor networks are dense wireless networks of small, low-cost sensors, which collect
and disseminate environmental data. Wireless sensor networks facilitate monitoring
and controlling of physical environments from remote locations with better accuracy
[1]. They have applications in a variety of fields such as environmental monitoring,
military purposes and gathering sensing information in inhospitable locations [2-5].
Sensor nodes have various energy and computational constraints because of their
inexpensive nature and ad-hoc method of deployment. Considerable research has been
focused at overcoming these deficiencies through more energy efficient routing,
localization algorithms and system design [6, 7]. Figure 1.1 [8] demonstrates a typical

wireless sensor network deployed in a specific area.

%‘O/O e O Sensor Node

O '®) Q Gateway
P Sensor Node

Figure 1.1 A typical Wireless Sensor Network.
1.2 Topic Area

A wireless sensor network [9] is usually a relatively large-scale network of
inexpensive, energy efficient devices [10]. For a node in a WSN, awareness of its
location and maybe the location of some other nodes is crucial for a successful
operation. As a case in point, routing data in sensor networks requires a fine
cooperation among nodes in order to use small amount of energy and to deliver data
as fast as possible. A node can choose a proper way to the destination, usually a sink
node, if it knows geographic location of itself and its neighbor nodes [11].

1
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Furthermore, most applications of sensor networks need to know position of sensor
nodes. For instance, a jungle watching WSN [12] must find out and report the location

of a probable fire.

Using GPS (Global Positioning System)[13] devices is the simplest way to determine
the location of a sensor node; nevertheless, because of some trait of GPS devices
which are in contrary with sensor networks demands, using them in all sensor nodes is
not justifiable. These traits include relatively high cost, high weight, and debatable
accuracy of GPS equipment in some situations. To overcome GPS Limitations, many
localization techniques have been developed for sensor networks which don’t depend
on the GPS devices merely. In these localization methods, a few nodes, called anchors
or seeds, is equipped with GPS devises and help other nodes to determine their

position.

Many algorithms have been proposed for localization of static WSNs [14-16]. Nodes
in static WSNs do not have movement; in consequences, if a node of these networks
could estimate its location once, it won’t have to repeat localization process again.
Nodes in mobile WSNs may move by external agent like wind, animal’s movements,
stream of a river, or by internal movement agents like wheels and continuous track
[17, 18]. Mobility has two contrary effects on localization process. In one hand, as
previous works [19] indicates, mobility can help localization of static sensor
networks. In that, more nodes can get information from mobile anchor nodes. On the
other hand, mobile sensor networks may suffer from rapidly changing situation which

leads to less validation time for observed information.

In general, the proposed localization algorithms concentrated on static WSNs due to
the high importance of this issue. Under mobility conditions, the static localization
algorithm is supposed to be applicable with some superficial modifications and

periodic mobility parameters tracking.

1.3 Research Question

Localization is a fundamental task in wireless ad-hoc networks. We consider the
problem of locating and orienting a network of unattended sensor nodes that have
2
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been deployed in an area at unknown locations. In a location related system, the
acquisition of objects’ locations is the critical step for the effective and smooth
working procedures. The basic concept is to deploy a large number of low-cost, self-
powered sensor nodes that acquire and process data. The sensor nodes may include
one or more acoustic microphones as well as seismic, magnetic, or imaging sensors. A
typical sensor network objective is to detect, track, and classify objects or events in
the neighborhood of the network [20].

We consider location estimation in networks where a small proportion of devices,
called reference devices or anchors, have a priori information about their coordinates.
All devices, regardless of their absolute coordinate knowledge, estimate the range
between themselves and their neighboring devices. Such location estimation is called
relative location because the range estimates collected are predominantly between
pairs of devices of which neither has absolute coordinate knowledge.

We intend to implement a range-free localization algorithm with the consideration of
power limitations of sensor nodes, the need for accurate results, and the time required

to execute the algorithm and get results.

1.4 Thesis Contribution

In this research, a new enhanced SOM-based localization algorithm is being proposed
due to the importance of the localization process and the limitations of the wireless
sensor nodes (hardware and power limits). The proposed technique is supposed to be

faster and more accurate over the previous similar algorithms.

The main contribution of this research is the utilization of neighboring nodes’
information to be used in the first stage of the learning process in the SOM, rather
than random initialization. Also, a modified SOM algorithm will be used instead of
the classical SOM algorithm (i.e. the updating formula). Furthermore, the localization
algorithm will be implemented in a distributed manner rather than centralized.

With these specifications, the algorithm will be faster, more accurate, and

significantly decrease the overhead on the sensor nodes.

www.manaraa.com



1.5 Outline of Rest of Thesis

The rest of thesis is organized as follows: Chapter 2 briefly describes some of the
most related works that have been done in the wireless nodes localization area. The
advantages and drawbacks of every work have been mentioned and discussed. In
chapter 3, the required theoretical and experimental materials that have been used in

this research are described.

Chapter 4 describes accurately the proposed technique, algorithm steps and the whole
system methodology used to localize the wireless nodes in a given wireless network.
In chapter 5, the experimentation environment, the experiment simulations and results
are demonstrated and analyzed. Comparisons to other related and recent works have
been done and also analyzed to verify the proposed algorithm. Finally, the concluding

remarks and future work have been listed in chapter 6, conclusion.
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Chapter 2
Related Work

2.1 Localization Algorithms

Recently, mobile ad-hoc network localization has received attention from many
researchers [21]. Many algorithms and solutions have been presented so far. These
algorithms are ranging from simple to complicated schemes, but they can be
categorized as range-based and range-free algorithms. Range-free algorithms utilize
only connectivity information and the number of hops between nodes. The others
utilize the distance measured between nodes by either using the Time-Of-Arrival
(TOA) [22], Time-Differential-Of-Arrival (TDOA) [23], Angle-Of-Arrival (AOA)
[24], or Received-Signal-Strength-Indicator (RSSI) [25] technologies. However, they
usually need extra hardware to achieve such measurement. When calculating the
absolute location, most schemes need at least three anchors (nodes that are equipped
with Global Positioning System or know their location in advance).

Range-free algorithms are widely used due to the observable advantages over the
range-based algorithms especially the conservation in power consumption in wireless
devices. Many trends have utilized the artificial neural networks in the localization
process. Different types of neural networks have been used in these algorithms. One
of the most recent used neural networks are the Self Organizing Maps (SOMs). The
use of SOMs showed its effectiveness in the localization process over other

algorithms.

2.2 Range-based Localization Algorithms

The traditional ranging methods based on received signal strength (RSSI), time of
arrival (TOA), angle of arrival (AOA), time difference of arrival (TDOA), etc. have
several shortcomings from the point of view of the sensor networks. RSSI is usually
very unpredictable since the received signal power is a complex function of the
propagation environment. Hence, radios in sensors will need to be well calibrated

otherwise sensors may exhibit significant variation in power to distance mapping.
5
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TOA using acoustic ranging will require an additional ultrasound source. TOA and
RSSI are affected by measurement as well as non-line of sight errors. TDOA is not
very practical for a distributed implementation. AOA sensing will require either an
antenna array or several ultra-sound receivers [20].

The Active Badge Location System [26] is often credited as one of the earliest
implementations of an indoor sensor network used to localize a mobile node [27].
Although this system, utilizing infrared, was only capable of localizing the room that
the mobile node was located in, many other systems based on this concept have been
proposed. The Bat system [28, 29], much like the Active-Badge System, also utilizes
a network of sensors. This system features a central controller that emits a query
which the mobile node responds to with an ultrasonic pulse. This pulse is picked up
by a network of receivers at varying times due to their locations. These times can be
used to compute the distances and hence the location of the mobile node. Researchers
at MIT (Massachusetts Institute of Technology) have utilized similar concepts from
the Bat System in their Cricket sensors, using a more decentralized structure. This
system requires less of a support infrastructure than the Bat system. The Cricket
Location System [30] uses a hybrid approach consisting of an Extended Kalman filter,
Least Square Minimization to reset the Kalman filter, and Outlier Rejection to
eliminate bad distance readings. Other researchers at MIT have proposed localization
by exploiting properties of robust quadrilaterals to localize an ad-hoc collection of
sensors without the use of beacons [31].

It is also possible to localize optically as shown in the HiBall head tracking system
[32]. Arrays of LEDs flash synchronously, and cameras capture the position of these
LEDs. The system utilizes information about the geometry of the system and
computes the position. Localization using signal strength of RF signals has been
studied extensively, [33-36] are all examples of methods that were devised using this

approach.

Monte Carlo Localization (MCL) was also one of the first practical methods for
localization of mobile WSNs. Sequential Monte Carlo method had used for
localization of mobile robots previously [37]. Hu and Evans adapted this technique
for sensor networks and proposed a practical method [38] for localization of mobile

sensor networks. In Sequential Monte Carlo methods, the current state of a system can
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be obtained by using its current observations and its posterior state. In MCL, the time
is divided into discrete intervals. A sensor node moves during a time interval and
localizes at the beginning of the next time interval. The main idea of Monte Carlo
Localization Boxed (MCB) method proposed by Baggio and Langendoen [39] is to
limit the area which the samples are drawn in MCL. Unlike the MCL, MCB uses the
information obtained from anchor nodes both before and after generation of samples.

This can lead to faster and more efficient sample generation.

All of these approaches complain from the use of range-based (signal strength) and
connectivity information, that are hard and slow to be collected, need hardware
support in the network nodes, and are rapidly changed especially in mobile networks

as well.

2.3 Range-free Localization Algorithms

Some other schemes are range-free and use connectivity information only. One of the
first examples of such a technique is the “GPS-Less” [40] positioning system, where
nodes use a centroid approach to estimate their position by averaging the coordinates
of nearby anchor nodes. DV-HOP (Distance Vector-HOP) is a typical range-free
algorithm [41], where anchor nodes flood the network with message beacons that are
used by each node to determine the minimal hop count distances. Using an estimate of
the average hop length, this information is used to obtain distance values and perform
multi-lateration. A similar approach is proposed in [42] and in [43] as an Ad-hoc
Positioning System (APS). It uses distance-vector forwarding technique to get the
minimum hop count from a node to heard anchors. By using corrections calculated by
anchors (average hop-distance between anchors), nodes estimate their location by

using lateration (triangulation) method.

Besides DV-HOP, some other algorithms seem to be more complicated, but have
better accuracy. The Multidimensional Scaling Map (MDS-MAP) proposed by Shang
et al. [44] is an example. MDS-MAP is originated from a data analytical technique by
displaying distance-like data in geometrical visualization. It computes the shortest
paths between all pairs of nodes to build a distance matrix and then applies the

7
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classical Multidimensional Scaling (MDS) to this matrix to retain the first two largest
eigenvalue and eigenvector to a 2D relative map. After that, with three given anchors,
it transforms the relative map into an absolute map based on anchors’ absolute
location. There are some variances of MDS-MAP such as centralized method: MDS-
MAP(C), and distributed one: MDS-MAP (P). But, in the distributed method, to get
the absolute location, nodes need global information about the subnetwork’s map that

contains at least three anchors.

2.3.1 Localization using Neural Networks

Neural networks have not been used extensively in this area. There has been some
research conducted by Chenna et al in [45]. However, Chenna et al, restricted
themselves to comparing Recurrent Neural Networks (RNN) to the Kalman Filter. In
[46], the authors showed that an MLP (Multi-Layer Perceptron) neural network can
be used for localization, and that its performance exceeds that of the Position-Velocity
(PV) and Position-Velocity-Acceleration (PVA) variants of the Kalman Filter. Tran
and Nguyen [47] proposed a new localization scheme based on Support Vector
Machine (SVM). The authors have contributed another machine learning method to

the localization problem, and proved the upper bound error of this method.

These first approaches that used neural networks in the localization process in
wireless sensor networks showed that it is a promising area and may lead to faster and

more accurate localization.

2.3.2 SOM-based Localization Algorithms

Regarding the localization based on Self-Organizing Maps, some researchers have
employed SOM directly or with some modification. The SOM projection technique
from the input space to the plane defined by the lattice of neurons property has been
widely exploited in many applications for data analysis and visualization of large data
sets [48, 49]. More recently, SOMs have been used to implement localization schemes

for mobile robots in unknown environments [50, 51]. The SOM, initially trained with
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information collected by on-board sensors during the exploration phase, is then used
as a virtual map to translate new sensor readings into grid positions or to recognize
different environments. The method presented by Giorgetti [52] employed the
classical SOM to the localization. This method uses centralized implementation and
requires thousands of learning steps in convergence of network topology. The authors
also realize that this method is good for small and medium size networks of up to 100
nodes. S. Asakura et al. proposed a distributed localization scheme [53] based on
SOM. Hu and Lee [54] also proposed another version of distributed localization based
on SOM. In this work, the authors employed a deduced SOM version [55]. But, this
method still needs too many iterations (at least 4000) to make the topology to be

converged with a relatively low accuracy.

In another work [56], the authors use SOM to track a mobile robot with the utilization
of surrounding environments from readings of sensor data. In the work presented by
Ertin and Priddy [57], another version of SOM was used to implement the localization
in wireless sensor networks. Their model is based on the assumption that network
nodes can sense a common phenomena (e.g. acoustic or seismic) at synchronized
timesteps. A further assumption is that the correlation between sensor readings is a
function only of the distance between nodes. Under these conditions, sensor readings
from all the nodes are first accumulated to form the training set, and then, after the
SOM model has been trained, are used to sort the nodes according to their proximity

to a set of virtual sensors placed on a regular grid.

These SOM-based algorithms led to acceptable error range and accuracy, but still
need a huge number of iterations to approach convergence. Also, they used the
classical SOM update algorithm, which may be not suitable in some cases, and

applicable only to small networks.

This research will also use the Self Organizing Maps in the localization process, but
will try to enhance the existing techniques and try to get benefit from the connectivity
and neighboring nodes’ information to start the learning stage with meaningful
initialization, and thus fasten the process. Moreover, the SOM update function will be
modified to be suitable for different network topologies as well as different network

sizes.
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Chapter 3

Background

3.1 Wireless Sensor Networks

Previously, sensor networks consisted of small number of sensor nodes that were
wired to a central processing station. However, nowadays, the focus is more on
wireless, distributed, sensing nodes. When the exact location of a particular
phenomenon is unknown, distributed sensing allows for closer placement to the
phenomenon than a single sensor would permit [58]. Also, in many cases, multiple
sensor nodes are required to overcome environmental obstacles like obstructions, line
of sight constraints etc. In most cases, the environment to be monitored does not have
an existing infrastructure for either energy or communication. It becomes imperative
for sensor nodes to survive on small, finite sources of energy and communicate
through a wireless communication channel. Another requirement for sensor networks
would be distributed processing capability. This is necessary since communication is
a major consumer of energy. A centralized system would mean that some of the
sensors would need to communicate over long distances that lead to even more energy
depletion. Hence, it would be a good idea to process locally as much information as
possible in order to minimize the total number of bits transmitted.

3.1.1 Challenges in WSNs

In spite of the diverse applications, sensor networks pose a number of unique
technical challenges due to the following factors [20]:

e Ad hoc deployment: Most sensor nodes are deployed in regions, which have
no infrastructure at all. A typical way of deployment in a forest would be
tossing the sensor nodes from an airplane. In such a situation, it is up to the
nodes to identify its connectivity and distribution.

e Unattended operation: In most cases, once deployed, sensor networks have no
human intervention. Hence the nodes themselves are responsible for

reconfiguration in case of any changes.
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e Not tethered: The sensor nodes are not connected to any energy source. There
is only a finite source of energy, which must be optimally used for processing
and communication. An interesting fact is that communication dominates
processing in energy consumption. Thus, in order to make optimal use of
energy, communication should be minimized as much as possible.

e Dynamic changes: It is required that a sensor network system be adaptable to
changing connectivity (for e.g., due to addition of more nodes, failure of nodes

etc.) as well as changing environmental stimuli.

Thus, unlike traditional networks, where the focus is on maximizing channel
throughput or minimizing node deployment, the major consideration in a sensor

network is to extend the system lifetime as well as the system robustness [59].

3.1.2 Sensor Networks Applications

Sensor networks may consist of many different types of sensors as discussed in [60]
such as seismic, low sampling rate magnetic, thermal, visual, infrared, acoustic and
radar, which are able to monitor wide variety of ambient conditions that include the
following:

e Temperature

e Humidity

e vehicular movement

e lightning condition

e pressure

e soil makeup

e noise levels

e the presence or absence of certain kinds of objects

e mechanical stress levels on attached objects

e The current characteristics such as speed, direction and size of an object.

Sensor nodes can be used for continuous sensing, event detection, event 1D, location
sensing, and local control of actuators. The concept of micro-sensing and wireless
connection of these nodes promises many new application areas. The applications are

11
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categorized into military, environment, health, home and other commercial areas. It is
possible to expand this classification with more categories such as space exploration,
chemical processing and disaster relief. In fact, due to the pervasive nature of micro
sensors, sensor networks have the potential to revolutionize the very way we

understand and construct complex physical system [61].

3.2 Localization

In sensor networks, nodes are deployed into an unplanned infrastructure where there
is no a priori knowledge of location. The problem of estimating spatial-coordinates of
the node is referred to as localization. An immediate solution, which comes to mind,
is GPS or the Global Positioning System. The different approaches to the localization
problem have been studied in [62-64]. However, there are some strong factors against
the usage of GPS. For one, GPS can work only outdoors. Secondly, GPS receivers are
expensive and not suitable in the construction of small cheap sensor nodes. A third
factor is that it cannot work in the presence of any obstruction like dense foliage etc.
Thus, sensor nodes would need to have other means of establishing their positions and
organizing themselves into a co-ordinate system without relying on an existing
infrastructure. Most of the proposed localization techniques today, depend on
recursive trilateration/multilateration techniques [59]. One way of considering sensor
networks is taking the network to be organized as a hierarchy with the nodes in the
upper level being more complex and already knowing their location through some
technique (say, through GPS). These nodes then act as beacons by transmitting their
position periodically. The nodes, which have not yet inferred their position, listen to
broadcasts from these beacons and use the information from beacons with low
message loss to calculate its own position. A simple technique would be to calculate
its position as the centroid of all the locations it has obtained. This is called as
proximity based localization. It is quite possible that all nodes do not have access to
the beacons. In this case, the nodes which have obtained their position through
proximity based localization themselves, act as beacons to the other nodes. This
process is called iterative multilateration. As can be guessed, iterative multilateration
leads to accumulation of localization error. Thus, trilateration is a geometric principle

which allows us to find a location if its distance from three already-known locations.
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The same principle is extended to three-dimensional space. In this case, spheres
instead of circles are used and four spheres would be needed. When a localization
technique using beacons is used, an important question would be how many initial
beacons to deploy. Too many beacons would result in self-interference among the
beacons while too less number of beacons would mean that many of the nodes would

have to depend on iterative multilateration.

3.2.1 Localization Techniques

Localization can be classified as fine-grained, which refers to the methods based on
timing/signal strength and coarse-grained, which refers to the techniques based on
proximity to a reference point. In [65], an over-view of the various localization

techniques is given.

Examples of fine-grained localization are:

e Timing: The distance between the receiver node and a reference point is
determined by the time of flight of the communication signal.

e Signal strength: As a signal propagates, attenuation takes place proportional to
the distance traveled. This fact is made use of to calculate the distance.

e Signal pattern matching: In this method, the coverage area is pre-scanned with
transmitting signals. A central system assigns a unique signature for each
square in the location grid. The system matches a transmitting signal from a
mobile transmitter with the pre-constructed database and arrives at the correct
location. But pre-generating the database goes against the idea of ad hoc
deployment.

e Directionality: Here, the angle of each reference point with respect to the

mobile node in some reference frame is used to determine the location.
Examples of coarse-grained localization are proximity based localization as described
earlier. [65] Proposes a localization system which is RF-based, receiver-based, ad

hoc, responsive, low-energy consuming and adaptive. RF-based transceivers would be

more inexpensive and smaller compared to GPS-receivers. Also in an infrastructure
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less environment, the deployment would be ad hoc and the nodes should be able to

adapt themselves to available reference points.

Locating objects in two (e.g., surface of the earth) or three dimensions (e.g., space)
from the knowledge of locations of some distinguished nodes, called anchors, has
been the central problem in navigation. Anchors can know location of a node from its
distances and/or angles. What distinguishes the localization problem in sensor
networks from the navigation problem is the following: due to spatial expanse of a
sensor network, not every sensor will have the required number of anchors for

ranging; to be cost effective, fewer anchors are desired.

3.3 Self Organizing Maps (SOMs)

A self-organizing map (SOM) [66] or self-organizing feature map (SOFM) is a type
of artificial neural network [67] that is trained using unsupervised learning to produce
a low-dimensional (typically two-dimensional), discretized representation of the input
space of the training samples, called a map. Self-organizing maps are different from
other artificial neural networks in the sense that they use a neighborhood function to

preserve the topological properties of the input space.

This makes SOMs useful for visualizing low-dimensional views of high-dimensional
data, akin to multidimensional scaling [68]. The model was first described as an
artificial neural network by the Finnish professor Teuvo Kohonen, and is sometimes

called a Kohonen map [69].

Self Organizing Map (SOM) by Teuvo Kohonen provides a data visualization
technique which helps to understand high dimensional data by reducing the
dimensions of data to a map. SOM also represents clustering concept by grouping
similar data together. Therefore it can be said that SOM reduces data dimensions and

displays similarities among data.

With SOM, clustering is performed by having several units compete for the current
object. Once the data have been entered into the system, the network of artificial

neurons is trained by providing information about inputs. The weight vector of the
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unit that is closest to the current object becomes the winning or active unit. During the
training stage, the values for the input variables are gradually adjusted in an attempt to
preserve neighborhood relationships that exist within the input data set. As it gets
closer to the input object, the weights of the winning unit are adjusted as well as its

neighbors.

Teuvo Kohonen writes "The SOM is a new, effective software tool for the
visualization of high-dimensional data. It converts complex, nonlinear statistical
relationships between high-dimensional data items into simple geometric relationships
on a low-dimensional display. As it thereby compresses information while preserving
the most important topological and metric relationships of the primary data items on

the display, it may also be thought to produce some kind of abstractions."

3.3.1 Reducing Data Dimensions and Data Similarity

Unlike other learning technique in neural networks, training a SOM requires no target
vector. A SOM learns to classify the training data without any external supervision.
Figure 3.1 [70] illustrates a SOM and how an input vector x is connected to the nodes
(neurons) of the SOM.

input vector

Figure 3.1 A typical SOM with input vector connection.
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Every node is connected to the input the same way, and no nodes are connected to

each other.

Getting the Best Matching Unit is done by running through all weight vectors and
calculating the distance from each weight to the sample vector. The weight with the
shortest distance is the winner. There are numerous ways to determine the distance;
however, the most commonly used method is the Euclidean Distance and/or Consine

Distance.

3.3.2 SOM Algorithm

Each data from data set recognizes themselves by competing for representation. SOM
mapping steps starts from initializing the weight vectors. From there a sample vector
is selected randomly and the map of weight vectors is searched to find which weight
best represents that sample. Each weight vector has neighboring weights that are close
to it. The weight that is chosen is rewarded by being able to become more like that
randomly selected sample vector. The neighbors of that weight are also rewarded by
being able to become more like the chosen sample vector. From this step the number
of neighbors and how much each weight can learn decreases over time. This whole

process [70, 71] is repeated a large number of times, usually more than 1000 times.
e Insum, learning occurs in several steps and over many iterations:
1. Each node's weights are initialized.
2. A vector is chosen at random from the set of training data.

3. Every node is examined to calculate which one's weights are most like the
input vector. The winning node is commonly known as the Best Matching
Unit (BMU).

4. Then the neighborhood of the BMU is calculated. The amount of neighbors

decreases over time.

5. The winning weight is rewarded with becoming more like the sample vector.

The neighbors also become more like the sample vector. The closer a node is
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to the BMU, the more its weights get altered and the farther away the neighbor

is from the BMU, the less it learns.

6. Repeat step 2 for N iterations.

e Calculating the Best Matching Unit:

Calculating the BMU is done according to the Euclidean distance among the
node’s weights (w;, W, ..., Wy) and the input vector’s values (X;, Xz, ... , Xp). This

gives a good measurement of how similar the two sets of data are to each other.

n

dist =D (x —w;)? (3.1)

i=0
where n is the dimension of the weight vectors and the input vector.
e Determining the BMU Neighborhood

o Size of the neighborhood: an exponential decay function(o(t)) is used

that shrinks at each iteration until eventually the neighborhood is just
the BMU itself.

o(t) =o,exp (_Tt] (3.2)

Where t is the time step, o, is the initial value and A is a time constant.

o Effect of location within the neighborhood: The neighborhood is
defined by a gaussian curve so that nodes that are closer are influenced
more than farther nodes.

o) = exp{— chjszt(t)j (3.3)

where @(t) is the neighborhood function used in the updating formula.

17

www.manaraa.com



Figure 3.2 [71] illustrates the changes of weights on a given weight vector w; by

applying the neighborhood function.

. I w T
Neuron j o
W)

Neighborhood Function /()

Weight vector wj =

Neighboring Neurons Weights changes

Figure 3.2 The weights changes by applying the neighborhood function.

e Modifying Nodes’ Weights

The new weight for a node is the old weight, plus a fraction (L) of the difference
between the old weight and the input vector and adjusted (® ) based on distance

from the BMU.
w(t +1) = w(t) + O(t)L(t) (x(t) — w(t)) (3.4)

The learning rate, L, is also an exponential decay function. This ensures that the

SOM wiill converge.

L(t) =L, exp(— %j (3.5)

where L is the initial value of the learning rate, 4 represents a time constant, and

t is the time step.

18

www.manaraa.com



Chapter 4

Proposed Technique

4.1 The Proposed Algorithm

In this chapter, the proposed algorithm used to localize the nodes' positions in a

wireless network will be introduced and described in details.

We named the algorithm (DLSOM), which stands for (Distributed Localization using
Self Organizing Maps). The algorithm is divided into two main stages, the

initialization stage and the SOM learning and converging stage.

4.1.1 Anchors Number and Placement

The accuracy of the estimated positions is highly affected by the number of anchor
nodes and their distribution in the sensor field. Although various algorithms use the
location information of anchors differently, the number and placement of anchors
affect the accuracies of localization algorithms to a certain extent. Substantial amount
of anchors are required to maintain the accuracy for distributed algorithms based on
multilateration, in which nodes estimate their positions as the average of the received
positions from anchors and neighbors. Theoretically, more anchors bring higher
location accuracy. However, too many anchors cause high energy consumption and

calculation complexity.

Many previous studies found that the optimal number of anchors to be selected in
most distributions of wireless sensor networks ranges from 3 to 6. In multilateration-
based algorithms, like our algorithm, using 4 anchors gives satisfying accuracy with
very slight difference of using more anchors, taking into account the calculation

complexity and energy consumption.

In [72], the number of anchors is optimized through a simulation with Matlab. The
localization algorithm was simulated with different number of anchors (3, 4, 6, 8, 10,
20, and 50). The correction quality of multilateration stagnates when more than six
anchors are used. To keep low complexity and energy consumption, four is chosen as
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the optimal number of anchors. Also, in the experiments of [73], they tried from 3 to
10 anchors on the anisotropic networks and found that 4 anchors usually give the best
result. Another benefit of using just 4 anchors for multilateration is that the
communication cost is much lower than using many anchors. The delay in getting the
distance information is also smaller. The information locality enables the method to

scale to large-size networks.

For the selection of anchors' positions, also many studies showed that the performance
IS better when anchors are uniformly distributed along the perimeter of the network.
The nodes with high correlations with other nodes should be selected [74-76]. In [73],
experiments showed that placing 4 anchors randomly gives slightly worse solutions
than using the 4 outer anchors (at the network perimeter). Using the 4 inner anchors

(at the four centers) gives the worst solution.

In this research, we tried to select the anchors at the perimeter and at the four centers
of the network. Extensive simulations using the two distributions showed that
selecting the anchors at the network perimeter gives better accuracy and less

estimation error.

This can be interpreted as: the nodes at the perimeter of the network are more
correlated to the unknown nodes. Moreover, the neighbors of these anchors can
estimate their locations more accurately based on the anchor position with regard to
the network (as will be explained later in the algorithm methodology and equations).
Thus, four anchors distributed at the network perimeter are selected in the simulations

of our algorithm.

4.1.2 The Initialization Stage

In this stage, the wireless network nodes try to estimate their locations using the well-
known positions of the anchor nodes. The anchor nodes are very small number of

nodes that know their locations in advance (equipped with GPS).

Each node in the network can estimate its initial location according to the following

steps:
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1- Each anchor node broadcasts its location to only the neighbors of that node. An

example is illustrated in Figure 4.1:
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Figure 4.1 Anchors broadcast locations to neighbors.

2- According to the location of that node with regard to the network topology (top-
right, top-left, bottom-right, bottom-left), the neighboring nodes can estimate

their initial locations, as illustrated in Figure 4.2.
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Figure 4.2 Anchors' Neighbors estimated locations.
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3- Now, the neighboring nodes also broadcast their estimated locations resulted

from step 2 to their neighbors inside the network as Figure 4.3 illustrates.

(33,73

(34,34

Figure 4.3 Neighbors broadcast their estimated location.

4- As shown in Figure 4.4, each node can estimate its location by averaging the

estimated locations received from its neighbors.

Cez) 0
®

0/.\:.

Avgrecloc))

%

O

Avrglrecloc)

O

[ ] (’ Avglrec(loch) ;
U3

O

CxLum

[
(34,3040

Figure 4.4 Neighbors estimate locations by averaging received locations.
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5- Finally, the unconnected nodes, like the red nodes illustrated in Figure 4.5, i.e.

have no neighbors

can estimate their locations randomly.
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Figure 4.5 Unconnected nodes estimate their locations randomly.

6- All the estimated initial locations can now be fed to the next stage of the

algorithm, the learning stage.

4.1.3 The Learning

Stage

To begin the iterations of the learning stage, the estimated locations resulted from the

previous stage must be exchanged through the network. This can be done according to

the following steps:

1- Each node forwards its estimated location to all of its neighbors. Now, each

node plays as the input vector and the winning neuron for the region formed

by its neighbors. This is done instead of finding the Best Matching Unit

(BMU) for each node to update its location and the neighboring locations as

well. Due to the distributed scheme of the algorithm, the step of finding the

BMU can be skipped, and consider each node as the BMU for the set of its

neighbors to do

perform the calculations and updates.
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2- Based on SOM updating formulas, the neighboring nodes of each node update

their weights (locations) using that node as the winning neuron.

3- At the end of the previous step, each node transmits its neighbor location
updates to all of its neighbors. On the other hand, it also receives its location

updates from its neighbors.

4- Finally, each node calculates its new estimated location by averaging its
current location and the received updates from its neighbors.

This process is repeated T time (The total number of iterations). The general steps of

the Initialization and learning stages are shown in Figure 4.6:
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The Initialization Stage

Anchors broadcast locations
to neighbors

A 4
Neighboring nodes estimate
their initial locations and
forward them to neighbors

Neighbors estimate their
locations by averaging the
received data

Unconnected nodes can
estimate their locations
randomly.

To the Learning Stage

The Learning Stage

Each node forwards its
estimated location to all of
its neighbors

A

Begin SOM learning using
updating formulas

v Repeat T times

Each node transmits its neighbor
location updates to all of its
neighbors and receives similar
updates from them

Each node calculates its new estimated
location by averaging current location

and the received updates

Figure 4.6 The block diagram of the DLSOM algorithm.
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4.2 DLSOM Mathematical Equations and Methodology

As described in the previous section, the DLSOM algorithm is divided into two main
stages. Given a wireless network with randomly distributed nodes (N nodes) in a
specified area (L x L) and a determined radio range (R) (also called a communication
range) in which the nodes can maximally communicate with others, the anchor nodes
are selected to be at the four ends (the perimeter) of the network topology (can select
anchors randomly or at the four centers, but this selection technique makes the

algorithm easier and more accurate).

In the initialization stage, the anchors begin to broadcast their well-known locations to
their neighbors (nodes within their communication range), as well as the position of
these anchors with regard to the network topology (top-right, top-left, bottom-right,
bottom-left). This information can be usefully used by the neighbors to estimate their
initial locations. The neighboring nodes to the anchor (top-right) will estimate their

locations using the following equation:

For all nodes i, where i = {1, 2, 3,....., N/}, N; is the number of the top-right anchor

neighbors:

(Xi, yi) = (random [Xanch1-R, Xanch1], random [Yanchi-R, Yanchi]) 4.1)

where (X;, Y;) are the coordinates of the i-th neighboring node to the first anchor (top-
right), R is the communication range, and (Xanch1, Yanch1) 1S the well-known location of

the first anchor.

The x-coordinate of the first anchor (top-right) is supposed to be the maximum x value
for the whole network nodes. The neighboring nodes of this anchor can take
advantage from this information and estimate their x-coordinate as a random value in

the period of [Xanch1-R, Xancni]-

Also, the y-coordinate of the first anchor (top-right) is supposed to be the maximum y
value for the whole network nodes. The neighboring nodes of this anchor can take
advantage from this information and estimate their y-coordinate as a random value in

the period of [Yancn1-R, Yanchi]-
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Similarly, the neighboring nodes to the second anchor (top-left) estimate their

locations according to (4.2):

For all nodes j, where j = {1, 2, 3,....., N,}, N> is the number of the top-left anchor
neighbors:
(Xj ) yj) = (random [Xanch2, Xanch2+R], random [Yanch2-R, Yancn2]) 4.2)

where (x; , y;) are the coordinates of the j-th neighboring node to the second anchor

(top-left), and (Xanch2, Yancn2) 1S the well-known location of the second anchor.

The x-coordinate of the second anchor (top-left) is supposed to be the minimum x
value for the whole network nodes. The neighboring nodes of this anchor can take
advantage from this information and estimate their x-coordinate as a random value in

the period of [Xanch2, Xanch2*R].

Also, the y-coordinate of the second anchor (top-left) is supposed to be the maximum
y value for the whole network nodes. The neighboring nodes of this anchor can take

advantage from this information and estimate their y-coordinate as a random value in

the period of [Yancn2-R, Yanch2]-

The neighboring nodes to the third anchor (bottom-right) estimate their locations

according to (4.3):

For all nodes k, where k = {1, 2, 3,....., N3}, N; is the number of the bottom-right

anchor neighbors:

(X« , Yk) = (random [Xanch3-R, Xanch3], random [Yanchs, Yanchs+R]) (4.3)

where (Xx , Yx) are the coordinates of the k-th neighboring node to the third anchor

(bottom-right), and (Xanchs, Yancns) 1S the well-known location of the third anchor.

The x-coordinate of the third anchor (bottom-right) is supposed to be the maximum x
value for the whole network nodes. The neighboring nodes of this anchor can take
advantage from this information and estimate their x-coordinate as a random value in

the period of [Xancna-R, Xanchs]-

Also, the y-coordinate of the third anchor (bottom-right) is supposed to be the

minimum Yy value for the whole network nodes. The neighboring nodes of this anchor
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can take advantage from this information and estimate their y-coordinate as a random

value in the period of [Yanchs, YanchstR].

Finally, the neighboring nodes to the fourth anchor (bottom-left) estimate their

locations according to (4.4):

For all nodes z, where z = {1, 2, 3,....., Ns}, N, is the number of the bottom-left
anchor neighbors:

(Xz y YZ) = (random [Xanch41 Xanch4+R]1 random [yanch41 yanch4+R]) (4-4)

where (x;, y,) are the coordinates of the z-th neighboring node to the fourth anchor

(bottom-left), and (Xanchs, Yanchs) 1S the well-known location of the fourth anchor.

The x-coordinate of the fourth anchor (bottom-left) is supposed to be the minimum x
value for the whole network nodes. The neighboring nodes of this anchor can take
advantage from this information and estimate their x-coordinate as a random value in

the period of [Xanch4, XanchatR].

Also, the y-coordinate of the fourth anchor (bottom-left) is supposed to be the
minimum y value for the whole network nodes. The neighboring nodes of this anchor
can take advantage from this information and estimate their y-coordinate as a random

value in the period of [Yancha, YancnatR].

Now, the estimated initial locations of the anchors' neighbors are transmitted to the
unknown neighboring nodes. These neighboring nodes will actually receive many
estimated locations (according to the number of neighbors). Each node estimates its
initial location by averaging the received locations according to the following

equation:

For all nodes v, where v = {1, 2, 3, ....., N5}, Ns is the number of inner nodes that

received estimated locations from neighbors:

NV NV

2% Y
(XV1yV):( Nv ' Nv ) (45)
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where (X, Yy) are the coordinates of the v-th node, and N, is the number of node's v

neighbors.

As a final step of the initialization stage, the rest of the network nodes that did not
receive any estimated location, due to its wide distance of the network nodes, i.e. out
of range of any network node will estimate their initial locations randomly (no

knowledge of any neighboring information).

For all nodes s, s= {1, 2, 3, ....., Ns}, Ngisthe number of the remaining unconnected

nodes:
(Xs, ¥s) = random() (4.6)
where (s, Ys) are the coordinates of the s-th node.

After completing the initialization stage, each node forwards its estimated location to

all of its neighbors in preparation to the learning stage.

Before going into the learning stage SOM formulas, let us formulate the mathematical

notations that will be used in these formulas and equations. The actual locations of the

wireless nodes are denoted by w? (i=1, 2, 3, ..., N) and the estimated locations are

denoted by w{ (i=1,2,3, ..., N).

As each node forwarded its estimated initial location to all of its neighbors, it also

knows the estimated locations of its neighbors, denoted as ij G=1,2,3, ..., N)

where N; is the number of neighboring nodes to the node with location w; .

Now, the node with the location w; plays as the winning neuron to the region formed

by the neighbors of that node. Instead of finding the BMU for each node, this
calculation step is skipped. Because each node knows its neighbors (within
communication range) and due to the distributed scheme of the algorithm, each node
can be considered as the BMU to the set of its neighbors and performs the location
updates of its neighbors.
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The following steps represent the learning stage of the algorithm:

1. Based on SOM, the neighboring nodes of w; will update their weights (locations)

according to the following updating formula:
W (D= w; (D +A (1) 4.7)
where A (t) is calculated using:
A =a ) (w - w; (1) (4.8)

And a (t) is the learning rate exponential decay function calculated using:
—(t+1
a )= oxp (D) (4.9)

where t is t-th time step of the total T learning steps.

2. The node with location w; now transmits its neighbor location updates to all of its
neighbors, and on the other hand, receives the same updates from its neighbors as W‘;i
(G=1,2,3,...,N).

3. At the end of the step, the node with location w’ calculates its new estimated
location according to the following equation:

N;

weE () W ) (4.10)

This is done by averaging the current location and the received updates from

neighbors.
4. Now, it re-forwards its new estimated location to its neighbors.

This learning process (steps 1-4) is repeated T times. The number of iterations can be

varied till convergence (reaching stable results).

The algorithm pseudocode, initialization stage flowchart, and learning stage flowchart

are illustrated in Figure 4.7, Figure 4.8, and Figure 4.9, respectively.
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Algorithm 4.1: DLSOM
Purpose: Wireless Node Localization

Input: N: No. of Nodes, R: Communication Radio Range
Output: w;, i=1,...., N: Estimated Nodes' Locations

Procedure:

% Initialization

for all anchors anchl, anch2, anch3, anch4 do
Broadcast location to neighbors

end for

for all nodes i=1: N1 do % N1, number of anch1 neighbors
Receive anchl location (Xanch1, Yanch1)
% anchl is top-right; estimate location based on the equation:
(%i, yi) = (random [Xanch1-R, Xanch1], random [Yancn1-R, Yancni])

end for

for all nodes j=1: N2 do % N2, number of anch2 neighbors
Receive anch2 location (Xanch2, Yanch2)
% anch2 is top-left; estimate location based on the equation:
(Xj, ;) = (random [Xanch2, Xanch2+R], random [Yanch2-R, Yancn2])

end for

for all nodes k=7: N3 do % N3, number of anch3 neighbors

Receive anch3 location (Xanch3, Yanch3)

% anch3 is bottom-right; estimate location based on the equation:

(X, Yx) = (random [Xanch3-R, Xancha], random [Yanchs, Yancha+R])

end for

Figure 4.7 DLSOM pseudocode, cont.
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for all nodes z=7/ :N4 do % N4, number of anch4 neighbors
Receive anch4 location (Xancha, Yancha)
% anch4 is bottom-left; estimate location based on the equation:

(Xz y YZ) = (random [Xanch41 Xanch4+R]1 random [yanch4, Yanch4+R])

end for

for all nodes m=1:M do % M= (N1+N2+N3+N4)
Transmit estimated locations to neighbors

end for

forall nodes v=1:Ns do % N5, number of inner nodes that have neighbors
Receive estimated locations from neighbors

% estimate location based on the equation:

NV NV

2% LY
(v, W) = ( N "N )

v '

end for

for all nodes s=1: Ns do % N4, number of the remaining unconnected nodes

(Xs, Ys) = random ()

end for

Figure 4.7 DLSOM pseudocode, cont.
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for all nodes i do
Wi = (Xi, i)

end for

% SOM Learning
fort=1:T do

—(t+1)
T

a (f) = exp ( )

for all nodes i do

forall nodes j=1:N; do % N;, number of w’ neighbors
A®)=a ) (w - w; (1)
ij (t+1) = ij () +A (1)

end for

for all nodes i do
Transmit updated locations to neighbors

Receive updated locations from neighbors

e 1 S e e
W, = E W .+ W,
I Ni +1 ( j=1 o I )

end for

end for

Figure 4.7 DLSOM pseudocode.
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Start DLSOM

Anchors broadcast locations to
neighbors

Unknown nodes are

neighbors to anchors? YE

Wait for received Estimate initial locations
estimated locations from and forward them to
neighbors neighbors

Unknown Nodes have
neighbors and received

NO estimated locations? YES

) . . Estimate initial locations
Estimate initial locations by averaging received

randomly data

Figure 4.8 The Initialization Stage Flowchart.
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NO

Each node forwards its
estimated location to all of its

A

neighbors

Based on SOM formulas, each
node updates its neighbors’
locations using its weight as the
BMU

4

Each node transmits its
neighbors’ updates to the
neighbors and also receives its
location updates from neighbors

A

Each node calculates its new
estimated location by averaging
its current location and the
received updates

End DLSOM

t<T

Figure 4.9 The Learning Stage Flowchart.
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Chapter 5

Experimentation and Results

5.1 Experimental Environment

The DLSOM algorithm is implemented and executed using Matlab 7.9 Software. The
source code is run on a desktop PC with Intel Pentium 4.0, 2.6 GHz CPU and 512 KB
RAM. The flow of the program is as follows:

1- Wireless network topology generation and deployment: The network was

generated randomly based on the following varying parameters:
(@) Number of Nodes (N): varied from 10 to 100 nodes.

(b) Communication Range (R): varied from 1 km to 4 km

(c) Deployment Area (LxL): 10 kmx 10 km is used.

2- Initialization Stage: The initial estimated locations of nodes were calculated
according to the following parameters:

(a) Four anchors are selected at the perimeter of the network topology (top-
right, bottom-right, top-left, bottom-left).

3- SOM Learning Stage: The final estimated locations were calculated according

to the following SOM parameters:
(a) Maximum Number of Iterations (T): varied from 25 to 50.

(b) Learning Rate (a): a decay exponential function of the current iteration and

the maximum number of iterations is used.

(c) Weight Updating Formula (A): is calculated using the learning rate and the

estimated vectors.
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5.2 Simulation Results

5.2.1 A 10-Nodes Wireless Network

The wireless network is generated randomly with 10 wireless nodes in an area of
10km x10km. Figure 5.1 shows the actual network nodes' locations with different
communication ranges, and the lines connecting the nodes represent the
neighborhood relations between nodes based on the communication range given to

the network. In Figure 5.1 (a), (b), and (c), the ranges are 1km, 2km, and 4km,

respectively.
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(c) Range = 4.
Figure 5.1 Actual Wireless Networks (N=10).
The anchors are selected to be nodes 1 (top-right), 2 (bottom-left), 5 (bottom-right),
and 8 (top-left).
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For the communication range 1, Figure 5.2 (a), (b), (c), and (d) show the estimated
locations for the neighbors of these anchors. As observed in the actual network, due to

the low connectivity, the anchors almost have no neighbors.
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Figure 5.2 Estimated Locations of anchors' neighbors (N=10, R=1).

For this communication range, most of the nodes have no neighbors, this, of course,
will force the nodes to estimate their locations randomly (no neighborhood

information is available).

After the initialization stage for all the network nodes is complete, each node has an
initial estimated location as illustrated in Figure 5.3 These locations are to be used in

the SOM learning as initial weights.
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Figure 5.3 The estimated locations for the network nodes (N=10, R=1).

The degree of divergence between the actual network and the network of initial

estimated locations (shown in figure 5.3) is very high. Almost all the network nodes

have estimated their locations randomly.

As a result of the SOM learning, the final estimated locations (weights) are shown in

Figure 5.4:

M
10 o3
9_‘3 « 710
gt +2 o8
T
=
= Bl +1
&
a 5r o
4 F
3_
ar o5
1 1 1 1 1 1 1 1 1 1 ]
0 1 2 3 4 5 B 7 g g 10
Distance {km}

Figure 5.4 The resulted estimated locations for the network nodes (N=10, R=1).

Obviously, the accuracy of the result is not very high. For example the nodes 6 and 9

shared the same location, and node 3 has an estimated location with a considerable
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difference of the actual one. Also, the number of iterations needed to reach

convergence (stable results) is considerably high (took about 50 iterations).

For the communication range 2, Figure 5.5 (a), (b), (c), and (d) shows the estimated
locations for the neighbors of the four anchors. As observed in the actual network, due
to the low connectivity and low number of nodes, the anchors almost have no

neighbors.
3 TSr
25 -
E 2 £ ES
= =} =
=T o
1 55
03g B 85 3 a5 0 i B 85 0 e M
Distance | km) Distance (krm)
(a) Neighbors of first anchor. (b) Neighbors of second anchor.
-
105 b
ot BS5|
5 95 E ar
- £
§ a1 .;." 78
a5 - T
B T a a5 1 I e 15 3 25 3 35
Digtance [km) Digtancs | km)
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Figure 5.5 Estimated Locations of anchors' neighbors (N=10, R=2).

After the initialization stage for all the network nodes is complete, each node has an
initial estimated location as illustrated in Figure 5.6 These locations are to be used in

the SOM learning as initial weights.
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Figure 5.6 The estimated locations for the network nodes (N=10, R=2).

Here, the degree of divergence between the actual network and the initial estimations

network is much smaller. This is because some of the inner nodes have neighbors and

got advantage of the estimated locations.

As a result of the SOM learning, the final estimated locations (weights) are shown in

Figure 5.7:
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Figure 5.7 The resulted estimated locations for the network nodes (N=10, R=2).

Obviously, the accuracy of the result is also much higher (about twice), and also, the

number of iterations needed to reach convergence (stable results) is lower (took about

35 iterations).
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For the communication range 4, Figure 5.8 (a), (b), (c), and (d) shows the estimated

locations for the neighbors of the four anchors. As observed in the actual network, all

anchors have neighbors. These neighbors estimate their locations as shown in the

following figures.
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Figure 5.8 Estimated Locations of anchors' neighbors (N=10, R=4).

For this communication range, most of the nodes have neighbors, this, of course, will
help the nodes to estimate their locations based on neighborhood information and

totally get benefit from the proposed algorithm.

After the initialization stage for all the network nodes is complete, each node has an
initial estimated location as illustrated in Figure 5.9 These locations are to be used in

the SOM learning as initial weights.
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Figure 5.9 The estimated locations for the network nodes (N=10, R=4).

The degree of divergence between the actual network and the initial estimations

network is considerably small. As a result of the SOM learning, the final estimated

locations (weights) are shown in Figure 5.10:
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Figure 5.10 The resulted estimated locations for the network nodes (N=10, R=4).

The accuracy of the result is considerably high. This can be observed from the

previous figure, in which most of the nodes have estimated locations with low
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difference of the actual locations. Also, the number of iterations needed to reach

convergence (stable results) is very low (took about 25 iterations).

5.2.2 A 50-Nodes Wireless Network

The wireless network is generated randomly with 50 wireless nodes in an area of
10km x10km. Figure 5.11 shows the actual network nodes' locations with different
communication ranges, and the lines connecting the nodes represent the neighborhood
relations between nodes based on the communication range given to the network. In
Figure 5.11 (a), (b), and (c), the ranges are 1km, 2km, and 4km, respectively.
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Figure 5.11 Actual Wireless Networks (N=50).
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The anchors are selected to be nodes 1 (bottom-right), 8 (top-left), 34 (top-right), and
49 (bottom-left). For the communication range 1, Figure 5.12 (a), (b), (c), and (d)
shows the estimated locations for the neighbors of these anchors. As observed in the

actual network, the anchors almost have no neighbors due to low radio range.
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Figure 5.12 Estimated Locations of anchors' neighbors (N=50, R=1).

After the initialization stage for all the network nodes is complete, each node has an
initial estimated location as illustrated in Figure 5.13 These locations are to be used in

the SOM learning as initial weights.
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Figure 5.13 The estimated locations for the network nodes (N=50, R=1).

Most of the nodes estimated their locations randomly due to low connectivity. Also,

some of the inner nodes that have neighbors shared the same estimated location. As a

result of the SOM learning, the final estimated locations (weights) are shown in

Figure 5.14:
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Figure 5.14 The resulted estimated locations for the network nodes (N=50, R=1).
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The accuracy of the result is relatively low. As shown in the previous figure, the final
estimated locations for most of the nodes have noticeable difference of the actual
locations. Also, the number of iterations needed to reach convergence (stable results)
is relatively high (In contrast with the 10-Node wireless network with R = 4). Here, It

took about 35 iterations to converge.

For the communication range 2, Figure 5.15 (a), (b), (c), and (d) shows the estimated
locations for the neighbors of the four anchors. All four anchors have considerable

number of neighbors that can estimate their locations easily.
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Figure 5.15 Estimated Locations of anchors' neighbors (N=50, R=2).

After the initialization stage for all the network nodes is complete, each node has an
initial estimated location as illustrated in Figure 5.16 These locations are to be used in

the SOM learning as initial weights.
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For this communication range, most of the nodes have neighbors, this, of course, will

help the nodes to estimate their locations based on neighborhood information and
totally get benefit from the proposed algorithm.

Distance [ km)

14

Distance [ km)

Figure 5.16 The estimated locations for the network nodes (N=50, R=2).

As a result of the SOM learning, the final estimated locations (weights) are shown in

Figure 5.17:

Distance [ km)
o

Distance {km)

Figure 5.17 The resulted estimated locations for the network nodes (N=50, R=2).

The accuracy of the result is higher, and also, the number of iterations needed to reach

convergence (stable results) is much lower (took about 25 iterations). This is due to
the higher connectivity and the correlation between nodes.
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For the communication range 4, Figure 5.18 (a), (b), (c), and (d) shows the estimated

locations for the neighbors of the four anchors. As can be shown in the actual

network, all anchors have large number of neighbors that can estimate their locations

based on received anchors' locations.
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Figure 5.18 Estimated Locations of anchors' neighbors (N=50, R=4).

After the initialization stage for all the network nodes is complete, each node has an

initial estimated location as illustrated in Figure 5.19 These locations are to be used in

the SOM learning as initial weights.

For this communication range, all of the nodes have neighbors, this, of course, will

help the nodes to estimate their locations based on neighborhood information and

totally get benefit from the proposed algorithm.
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Figure 5.19 The estimated locations for the network nodes (N=50, R=4)

But, because of the existence of the averaging step during the initialization stage, and
because of the similarity of neighbors for some nodes, the final estimated locations for
these nodes will be —nearly- the same. This will lead to the agglomeration noticed in

the previous figure.

This problem occurred in most of multiteraion-based methods, in which a node can
estimate its location by averaging the received locations. This is due the accumulation

of the error in previous estimations.

As a result of the SOM learning, the final estimated locations (weights) are shown in
Figure 5.20:
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Figure 5.20 The resulted estimated locations for the network nodes (N=50, R=4).

Here, we noticed that the accuracy of the algorithm is lower than the previous case,
contrary to the expectations. This can be explained due to the agglomeration

happened during the initialization stage. The number of iterations is about 28.

5.2.3 A 100-Nodes wireless Network

The wireless network is generated randomly with 100 wireless nodes in an area of
10kmx10km. Three networks with different communication ranges, 1km, 2km, and

4km have been used.

The anchors are selected to be nodes 8 (top-left), 18 (bottom-right), 24 (bottom-left),
and 100 (top-right). For the communication range 1, anchors have low number of
neighbors due to low radio range.

After the initialization stage for all the network nodes is complete, each node has an
initial estimated location. These locations are to be used in the SOM learning as initial
weights. Some of the inner nodes, that have neighbors, estimate their locations based
on received data from adjacent nodes. As a result of the SOM learning, the final
estimated locations showed that the accuracy of the result is relatively low (many
nodes shared the same location), and also, the number of iterations needed to reach
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convergence (stable results) is high (took about 45 iterations). Although the
communication range is very low, the problem of agglomeration slightly occurred and
- besides the low communication range- influenced the accuracy of the algorithm.
This is due the large number of nodes deployed in a limited area.

For the communication range 2, most anchors have neighbors that can estimate their
locations based on anchors' sent data. After the initialization stage for all the network
nodes is complete, each node has an initial estimated location that can be used in the
SOM learning as initial weights. The problem of agglomeration occurred; this is due
to the large number of nodes.

As a result of the SOM learning, the final estimated locations (weights) showed that
the accuracy of the result is higher than the previous case (the difference of estimated
and actual locations of nodes decreased), and also, the number of iterations needed to

reach convergence (stable results) is lower (took about 36 iterations).

For the communication range 4, anchors have high number of neighbors that can
estimate their locations with taking advantage of received data. After the initialization
stage for all the network nodes is complete, each node has an initial estimated location

to be used in the SOM learning as initial weights.

Again, the agglomeration problem occurred with a high degree due to the high
communication range and the large number of nodes. As a result of the SOM learning,
the accuracy of the result in this case is relatively low (many nodes share the same
location and have noticeable difference of the actual locations) and the number of

iterations is about 40.

Table 5.1 summarizes the results of the three network types that have been used in
simulations. The best case is when the number of nodes is 50 with radio range of 2, in
which the average estimation error is about 0.228 whereas the worst case is when the
number of nodes is 10 with radio range of 1, in which the average estimation error is
about 0.45.
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Table 5.1 The simulation results for different set of parameters.

Avg. Error % Rradio Range Number of Nodes
0.4500046 50 1 10
0.341468 35 2 10
0.263515 25 4 10
0.401948 35 1 50
0.227984 25 2 50
0.295691 28 4 50
0.389915 45 1 100
0.276799 36 2 100
0.316757 40 4 100

5.2.4 Selecting the Anchors at the Four Centers

To see the effect of changing the four anchors placement on DLSOM, we tried to

select the anchors at the four centers of the network. The following Table 5.2 shows

the average error results by applying this change - placement - on the same

experimental cases described earlier.

Table 5.2 The simulation results for selecting anchors at the four centers.

Avg. Error Radio Range Number of Nodes
0.4714 10
0.3176 10
0.683 10
0.721 50
0.5279 50
0.693 50
0.689 100
0.6567 100
0.812 100
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As shown in the previous table, the average error by placing the anchors at the four
centers is much larger in comparison with the results shown in Table 5.1. This can be
explained as: the anchors at the perimeter of the network are more correlated to nodes
than the four-center anchors. Moreover, the equations used to estimate the locations of
anchors' neighbors - explained in chapter 4 - are more accurate; for all the anchors at

the centers of the network, the estimation equation that can be used is:
(x,y) = (random [Xanch-R, XanchtR], random [Yanch-R, YanchtR]) (5.1)

where (x, y) are the coordinates of all the anchors' neighbors, (Xanch, Yanch) are the
coordinates of any of the four anchors, and R is the communication range. Obviously,
the period of randomization for location estimation is unified and larger in contrast

with the four different periods used before.

Thus, based on this experiment results and previous studies, the anchors are selected

at the perimeter of the network to increase the DLSOM accuracy.

5.3 Evaluation Parameters

The evaluation parameter that is used in this thesis is the average error between the
estimated locations resulted from the DLSOM algorithm and the actual locations. This

error is calculated according to the following equation:

w —w?

Error(R) :iZN:

N2 R (5.2)

where R is the communication range, N is the number of nodes, w’ is the i-th node

estimated location, and w? is the i-th node actual location.

5.3.1 Performance of DLSOM

To evaluate the performance of DLSOM, the average error is calculated for each of
the experimental cases. Figures 5.21, 5.22, and 5.23 show the relationship between the

number of nodes and the average error calculated.
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Figure 5.21 Number of network nodes Vs. Average error (R=1).

For radio range 1, by increasing the number of nodes, the average error is decreasing.
This can be explained as: by increasing the number of nodes with a low radio range,
the neighborhood information increases slightly, and thus, the DLSOM algorithm

performs better.
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Figure 5.22 Number of network nodes Vs. Average error (R=2).

For radio range 2, by increasing the number of nodes, the average error is decreasing
and then increasing. This can be explained as: by increasing the number of nodes with
a medium radio range, the neighborhood information increases, and thus, the DLSOM
algorithm performs better. But, by deploying a large number of nodes in a limited area
with this radio range, the agglomeration problem — described earlier - occurs and the

DLSOM performance decreases slightly.

ol A |_ih|
)

55

www.manharaa.com




0.34
0.32

0.3
0.28
0.26

Avg. Err

0.24
0.22

0.2
0 20 40 60 80 100 120

Number of Nodes

Figure 5.23 Number of network nodes Vs. Average error (R=4).

For radio range 4, by increasing the number of nodes, the average error is increasing.
This can be explained as: by increasing the number of nodes with a large radio range
in a limited area, the agglomeration problem occurs and the DLSOM performance

decreases slightly.

In Figures 5.24, 5.25, and 5.26, the effect of radio range variance is illustrated:
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Figure 5.24 Radio range Vs. Average error (N=10).

For low number of nodes, by increasing radio range, the average error decreases. This
is due to the neighborhood information support that increases with high radio ranges.
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Figure 5.25 Radio range Vs. Average error (N=50).

For medium number of nodes, by increasing radio range, the average error decreases
and then increases. This is — again - due to the occurrence of the agglomeration

problem.
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Figure 5.26 Radio range Vs. Average error (N=100).

Also, for large number of nodes, by increasing radio range, the average error

decreases and then increases because of the occurrence of the agglomeration problem.

5.3.2 Time Analysis

To evaluate the speed of the algorithm, the time elapsed to execute the DLSOM

algorithm has been measured for each of the simulation experimental cases.
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Figures 5.27, 5.28, and 5.29 illustrate the relationship between the number of nodes
and time elapsed to execute the algorithm:
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Figure 5.27 No. of Nodes Vs. Time (R=1).
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Figure 5.28 No. of Nodes Vs. Time (R=2).
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Figure 5.29 No. of Nodes Vs. Time (R=4).
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As observed from the previous figures, the time needed to execute the DLSOM
algorithm increases linearly by increasing the number of nodes. The time spent in the
initialization stage is constant and short. This is because this stage executes for one
time (not iterative) and the calculations are fast and simple.

Most of the time is spent in the learning stage (iterative process), in which the nodes
transmit and receive location updates to neighbors at each iteration. This time, of

course, increases by increasing the number of nodes.

For example, in Figure 5.27, for radio range 1, the time needed to execute the
algorithm is about 56 seconds. About 12 seconds only are spent in the initialization
stage and 44 seconds in the learning stage.

Figures 5.30, 5.31, and 5.32 illustrate the relationship between the radio range
variance and the time elapsed to execute the algorithm.
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Figure 5.30 Radio Range Vs. Time (N=10).
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Figure 5.31 Radio Range Vs. Time (N=50).
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Figure 5.32 Radio Range Vs. Time (N=100).

Also, as observed from the previous figures, the time needed to execute the DLSOM
algorithm increases linearly by increasing the radio range. This is because by
increasing the radio range, more transmission and receiving processes are done by the

increment of neighboring nodes. These processes take most of the time.

In all previous figures, although the number of iterations decreases by number of
nodes and radio range increment, the time spent increases. This slight increment does
not affect the performance of the algorithm; DLSOM is considered to be fast in all

cases.

5.3.3 Performance Comparisons

The DLSOM algorithm is compared to many similar algorithms that are used to
localize the wireless nodes in an ad-hoc wireless network. The comparable parameter
chosen is the average error and some expressive figures in a unified set of simulation

parameters.

For 50 wireless nodes randomly deployed in an area of 10kmx10km with a radio
range of 2km and four anchors selected at the network perimeter, Figure 5.33 [57]
illustrates the actual network and the different estimated networks resulted from

applying the SOM and MDS-MAP, respectively.
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Figure 5.33 Resulted estimated networks by applying SOM and MDS-MAP (N=50, R=2).

The following Table 5.3 summarizes the average error calculated for each of the

previous estimated networks. These results are the average of 30 different trials of the

same set of parameters.
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Table 5.3 The average error for different algorithms (N=50, R=2).

Avqg. Error Radio Range No. of Nodes Algorithm
0.46 2 50 SOM
0.38 2 50 MDS-MAP
0.27 2 50 DLSOM

Obviously, the DLSOM algorithm has the least average error over the other
algorithms with a noticeable variance. It is worth mentioning that especially in this

case — 50 Nodes and range of 2 - , the DLSOM performs the best.

Also, comparing the resulted estimated networks by applying the SOM and the MDS-
MAP algorithms to the one resulted by applying the DLSOM algorithm in a unified
set of simulation parameters, the DLSOM network is observed to be the most similar
to the original network (actual network shown in Figure 5.11 (b) and estimated using
DLSOM is shown in Figure 5.17).

In Figure 5.34 [54], 100 wireless nodes are randomly deployed in an area of
10kmx10km with a radio range of 2km and four anchors selected at the ends of the
network. The actual network and the different estimated networks resulted from
applying DV-HOP and SOM are illustrated in Figure 5.34 (a), (b) and (c),

respectively.
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Figure 5.34 Resulted estimated networks by applying DV-HOP and SOM (N=100, R=2).

The following Table 5.4 summarizes the average error calculated for each of the
previous estimated networks. These results are the average of 50 different trials of the

same set of parameters.
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Table 5.4 The average error for different algorithms (N=100,R=2).

Avg. Error Radio Range No. of Nodes Algorithm
0.50 2 100 DV-HOP
0.35 2 100 SOM
0.30 2 100 DLSOM

Again, the DLSOM algorithm has the least average error over the other algorithms

with a noticeable variance. And, comparing the resulted estimated networks by
applying the SOM and the DV-HOP algorithms to the one resulted by applying the
DLSOM algorithm in a unified set of simulation parameters, the DLSOM network is

observed to be the most similar to the original network.

Figures 5.35 and 5.36 show the actual and estimated networks by applying DLSOM

in the same set of the previous parameters:
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Figure 5.35 Actual Network (N=100, R=2).
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Figure 5.36 Resulted estimated Network by DLSOM (N=100, R=2).

For low radio ranges, low number of nodes, and irregular network topology (random),
some algorithms proved their high performance over the others. In [52], a classical
SOM localization algorithm is used and produced accurate results in comparison with

the others. Here, we will prove that in these situations our algorithm performs better.

We have implemented the classical SOM algorithm used in [52] on the same
hardware/software environment that we used to implement our algorithm. Figure 5.37
illustrates the actual network and the resulted estimated networks by applying the
classical SOM and the DLSOM algorithms.

The original network is a 10 wireless nodes deployed randomly in an area of

10kmx10km with a radio range of 2km.
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Figure 5.37 Performance comparison by applying DLSOM and Localized SOM.

The figure shows that the DLSOM performs better with the similarity to the original

network and with the less average error calculated for both algorithms (showed in

Table 5.5).

Moreover, the classical SOM algorithm is centralized while the DLSOM is

distributed. Hence, the wireless network nodes' computation overhead is reduced

significantly, and also the number of iterations took in the DLSOM is about 35 which
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is not mentioned in comparison to the thousand iterations took by the classical

localized SOM.

The following Table 5.5 summarizes the average error calculated for DLSOM and

Localized SOM of the previous estimated networks. These results are the average of

50 different trials of the same set of parameters.

Table 5.5 The average error for DLSOM and Localized SOM (N=10, R=2).

Avg. Error Radio Range No. of Nodes Algorithm
0.36 2 10 DLSOM
0.38 2 10 Localized SOM

With about 2% less percentage error of DLSOM in comparison with localized SOM,

DLSOM approved its effectiveness even in WSNs with low number of nodes.
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Chapter 6
Conclusion

6.1 Summary and Concluding Remarks

In this thesis, a Self Organizing Maps (SOMs) - based distributed localization
algorithm is proposed (DLSOM). The main objective of this algorithm is to calculate

the locations of nodes in wireless sensor networks.

The intelligent SOM neural networks are selected due to their multiple characteristics
over other types of neural networks. One of the most important characteristics of
SOMs is their unsupervised training fashion, in which no reward or cost functions are
needed. The other feature is that SOMs provides a technique for representation of
multidimensional data into much lower-dimensional spaces. Moreover, the

arrangement of neurons into a grid increases the accuracy of the results.

The proposed localization algorithm aimed to get benefit from the neighborhood
information that can be gathered fast and easy by the wireless nodes (each node
knows its neighbors based on the communication radio range). Thus, no
communication overhead occurs and the usage of this information in the initialization
stage of the algorithm significantly helped SOMs to begin with useful initial data to
be used in the learning stage. Hence, the learning time and the number of iterations
took by SOMs to reach stable results have been noticeably decreased. Also, the
accuracy of the results increased and the output locations are the most approximate in
comparison with the previous related algorithms.

The experimentation and simulation results proved the effectiveness of the DLSOM
algorithm in different simulation parameters. The criterion that has been calculated to
evaluate and compare the performance of the algorithm over other algorithms is the

average error.

The average error of the DLSOM is found to be the least in most cases in comparison
with some related algorithms that proved their accuracy in this field. The accuracy of
DLSOM which is directly related to the average error is also found to be the most.
The total average error (calculated by averaging errors using all experiments) is about
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30%. This percentage is much lower than the other algorithms. Moreover, the number
of iterations needed in DLSOM ranges from 25 to 50. This number is significantly
much smaller in comparison with the hundreds to thousands iterations needed by
other algorithms which reduces the learning time substantially.

Experimentations showed that the case in which the DLSOM performs the best is
with the set of parameters (50 wireless nodes and radio range of 2). The performance
gets worse and worse by increasing the number of nodes in a limited area and also
increasing the radio range with this large number of nodes. But in all cases, the
algorithms proved its effectiveness over the previous contributions either in low or
high number of nodes. Referring to the best case mentioned before, this can be
considered as the most important advantage of the algorithm because most of the real
wireless networks deployed in a limited area (10kmx10km) usually contains no more

50 nodes with a communication range of 2km as an average.

6.2 Recommendations and Future Work

During the experimentations and validation of our proposed algorithm, the problem of
agglomeration has been occurred in some cases, in which the nodes have
approximately the same initial estimated location due to the averaging step in the
initialization stage. These cases include the high number of network nodes deployed

in a limited area and have a relatively high communication radio range.

This may be solved by selecting the nearest three - or more (based on the total number
of nodes) - neighbors to be averaged to get the estimated location. In this way, the
nodes that have the same set of neighbors will be enforced to choose the nearest

subset and hence will get a distinct estimated location.

Another suggested solution is to replace the averaging process step with a more
complex and distinguishing mathematical process, such as trilateration method used
in GPS systems to locate some wireless node, in which three known-location nodes
are used to estimate the unknown node location with a series of complex
mathematical equations. On the other hand, trilateration could be more accurate to

calculate the initial estimated locations of wireless nodes.
69

www.manaraa.com



In this thesis research, we investigated a proposed distributed localization algorithm
that has been applied on static wireless sensor networks, in which the nodes have no

movement.

For mobile wireless networks, in which the nodes move with specific parameters
(motion speed and motion direction), the proposed localization algorithm can be
modified to be applied on these networks. This can be done by refreshing the set of
nodes' neighbors periodically and use the most updated neighbors list in the learning

stage to get the most approximate location of the node.

The period of refreshing is determined based on the motion speed of the wireless

nodes in the network.

In mobile networks, the accuracy of the algorithm is supposed to be less than static
networks due to the continuous movement and different neighborhood information

that change rapidly, and hence influence the principle of the algorithm.
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